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Abstract 

A simple theoretical model of the effect of specific ion-pairing with a chemically inert counterion on the rate of intramolecular 
charge transfer reactions is presented. The counterion motion is treated as corresponding to a separate reaction coordinate 
on the two-dimensional free energy surface. For the limiting case of strong ion-pairing and low driving force, i.e. ppairl > IAGo\ > 
k,T, the dependence of the effect on the donor-acceptor separation, rn,, and on the AGO of reaction are discussed in detail. 
In this limit the counterion dynamics effectively controls the rate of the intramolecular electron transfer over a broad range 
of donor-acceptor distances. For the limiting case of fast counterion motion the analytical relationship between the reorganization 
energy and activation energy along the Coulomb coordinate of the free energy surface has been derived. 
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1. Introduction 

Among other areas of this intensely active field, two 
aspects of electron transfer (ET) processes have been 
receiving a substantial amount of attention in recent 
years: one of them is the question of the non-equilibrium 
medium dynamics [l] and the non-adiabatic to adiabatic 
transition in ultrafast ET reactions; the other one is 
the influence of electrolytes on the rates of intramo- 
lecular charge transfer reactions [2]. Even though the 
dynamic solvation effects are the domain of ultra-fast 
femtosecond spectroscopists [3,4], while on the other 
hand the electrolyte effects can be studied on nano- 
second, even microsecond, time scales [5,6], these two 
phenomena are very closely related. Indeed, the most 
clear examples of the transition from a non-adiabatic 
intramolecular ET to an adiabatic, medium controlled 
ET process originate from the salt effect studies rather 
than from the ultra-fast measurements on polar solvation 
171. 

Specific ion-pairing effects are of particular, if not 
necessarily fully appreciated, importance for intra- 
molecular electron transfer reactions studied in inor- 
ganic or organometallic donor-acceptor model com- 
pounds. Most of these systems are prepared as salts 
and as such they come with their counterions inseparably 
‘built in’. Electrostatic interactions with these coun- 

terions will influence, and in some instances even control, 
the overall behavior of the models. 

While the Debye-Htickel theory and its variations 
have been applied with variable success to both in- 
termolecular electron transfer [8], as well as to intra- 
molecular ET reactions [5] in solutions of electrolytes 
in the absence of ion-pairing, we feel that there is a 
need for a simple explicit model which would account 
for, and help to predict, the trends of strong specific 
ion-pairing effects in intramolecular electron transfer. 
The outline of the proposed model, as well as more 
detailed discussion of two limiting cases, is given below. 

2. The theoretical model 

The general approach presented in this paper is 
based on the concept of a two-dimensional reaction 
coordinate advanced by van der Zwan and Hynes [9], 
Agmon and Hopfield [lo], and perhaps best known in 
the form presented by Sumi and Marcus [ll]. In these 
works one coordinate corresponds to the ‘fast reor- 
ganization mode’, usually associated with the internal 
vibrations, and the ‘slow reorganization mode’ associated 
with the solvent relaxation (Fig. l(a)). The reaction 
along the fast mode coordinate is treated as non- 
adiabatic, while the evolution along the slow mode 
coordinate can lead to the onset of adiabatic behavior. 
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Fig. 1. Two-dimensional free energy surfaces: (a) the original 
Sumi-Marcus model, parabolic along both fast and slow reaction 
coordinates; (b) the model advanced in this paper with parabolic 
free energy profile along the fast solvent reorganization coordinate, 
qP,,_, and Coulombic profile along the slow counterion dissocia- 
tion-association coordinate, qiunic (the scaling corresponds to 

&““iC = lhp&3. 

In our picture the internal vibrations and the polar 
solvation are combined together into one fast mode 
along qpolar, while the significantly slower and physically 
distinct diffusive dynamics of the chemically inert coun- 
terion is described by the slow mode along qionic (Fig. 
l(b)). The difference between the original two-dimen- 
sional free energy surface theory and this work is made 
apparent in Fig. 1. In the first case both orthogonal 
modes give rise to approximately harmonic potentials 
(Fig. l(a)). In the second one the potential along the 

fast mode coordinate, V(qpolar), remains parabolic, how- 
ever, the potential along the slow mode coordinate, 
V(qionic), corresponding to ion diffusion, is Coulombic. 
This difference has significant consequences. Firstly, it 
leads to a different Boltzman distribution and different 
time evolution along this coordinate. Secondly, it com- 
plicates the formal treatment by making certain crucial 
equations of the Sumi-Marcus theory not solvable an- 
alytically, thus forcing one to evaluate the survival 
probability numerically [ll]. However, the objective of 
this paper is not the formal detail of the model, which 
will be discussed elsewhere, but rather the derivation 
of simple approximations useful for an experimentalist. 

For the sake of simplicity we will focus on a system 
consisting of a univalent counterion associated with a 
univalent charge-shift model compound of an opposite 
charge in a linear arrangement (Fig. 2). Naturally, the 
approach applies to all similar systems, as long as the 
donor-acceptor assembly carries a net charge. However, 
in the present form it does not directly apply to charge- 
separation reactions in neutral molecules. For the same 
reason of simplicity we will ignore ionic atmosphere 
effects and treat the potential along the slow coordinate 
as purely Coulombic. Corrections for these contributions 
can certainly be added to the potential, however, it is 
highly questionable how realistic they would be, since 
the expression for the ionic atmosphere term is obtained 
on the basis of an expansion which is valid only if the 
ion-ion interaction,z,z,e2/~,,, is significantly lower than 
the thermal energy k,T [12], while in this paper we 
are specifically addressing the case of strong specific 
ion-paring with the model compound, i.e. ]Epair] >> k,T. 

To begin with, it is important to note that the Onsager 
radius, d, =e21&,T, for univalent ions in moderately 
polar solvents is usually larger than the donor-acceptor 
distance in typical electron transfer model compounds. 
For example, in CH,CI, d, is equal to 55 A, and even 
in acetonitrile it is 15 A, while the R,, of only relatively 
few models which have been investigated exceeds 15 
A. Indeed, since the exchange dynamics in tight ion- 
pairs in moderately polar solvents can be as slow as 
1 X lo6 s-r [13], it is appropriate to treat the counterion/ 
model compound complex as a closely correlated ion- 
pair, whose average lifetime is in most of cases sig- 
nificantly longer than the duration of the electron 
transfer event (Fig. 2). In this instance the counterion 
diffusion has to be treated explicitly, and an onset of 
adiabatic behavior, as well as multiexponential ET 
kinetics, are expected. This special regime corresponding 
to IEpair( > /AGO/ is discussed as ‘limiting case A’. 

@D-m-A ET D--a@ 

Fig. 2. Schematic representation of an intramolecular charge shift 
reaction in the presence of an associated counterion. 
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In the relatively rare cases for which lEpairl >> k,T, 
yet kion S= k,, the intramolecular ET process is non- 
adiabatic and it is sufficient to include the ionic effects 
in the description of the energetics of the system. This 
means calculating the AioniC, i.e. the ionic contribution 
to the overall reorganization energy A, as well as the 
free energy of activation AG fionic which is not linked 
with Aionic by the usual linear relationship [7,14]. The 
behavior in this regime is discussed as ‘limiting case 
B’. 

3. Two limiting cases 

3.1. Case A. The limit of slow counterion motion, 
k” << let 

This case is similar to the ‘narrow reaction window 
limit’ of the Sumi-Marcus theory. In accordance with 
their work, it will generally lead to a multiexponential 
behavior described by a convolution of the time de- 
pendence of the diffusive motion along the slow co- 
ordinate and electron transfer rate from a given point 
along this coordinate [ll], i.e. if the system evolves 
along the slow coordinate as qionic =f(t), and the electron 
transfer rate depends on this coordinate as kET=f(qionic), 
then the overall rate is characterized by a rate function, 
k overa,, =f(t), rather than a proper rate constant. Never- 
theless, in certain special situations a simple single 
exponential approximation is expected to be adequate. 
Such an approximation can be very useful and, indeed, 
desirable, since most likely the majority of experimental 
data will not be complete enough to warrant the full 
multiexponential analysis. 

In particular, in the case of a weakly exoergic in- 
tramolecular ET reaction and strong pairing with a 
counterion, such that lEpairl> IAGO], the reaction is 
effectively endoergic by as much as (Repair-AGO), as 
long as the counterion remains in the vicinity of the 
donor-acceptor system, and, therefore, it will not pro- 
ceed at any appreciable rate. The reaction will take 
place only if the counterion diffuses sufficiently far 
away from the donor site. It is true that the barrier 
crossing can occur due to evolution exclusively along 
the fast coordinate, qpolar, (Fig. l(b)), and, indeed, this 
will be the major channel in a highly exoergic ET in 
the presence of electrolytes. However, in the case of 
weakly exoergic ET, if the system remains in a fixed 
position along the qionic coordinate, a rapid back transfer 
will be always preferred over the slow evolution towards 
the product equilibrium and no net reaction will be 
observed. Therefore, the counter-ion motion becomes 
the rate determining step, and effectively it is gating 
the electron transfer process [15]. The adiabaticity of 
an intramolecular ET process in the presence of an 
associated counterion can be demonstrated by com- 

paring the rate of the electron exchange at the crossing 
point with the velocity of the counterion in the attractive 
electrostatic field. At the crossing point the electron 
oscillates between the two non-adiabatic surfaces with 
the full frequency f. = 25-x 2V, where Vis the electronic 
coupling between the donor and the acceptor. Even 
for electronic coupling as small as, e.g. 30 cm-‘, this 
frequency will be as high as 1.2~ 1Ol3 s-l. On the other 
hand, the upper limit of the velocity of a counterion 
in the crossing region can be estimated from the cor- 
responding ion mobility, p, and the magnitude of the 
electrostatic field, ,??, acting upon it. For example, for 
the Na’ ion the terminal velocity in a field generated 
by a point charge located at 5 %, is estimated to be 
approximately 4 X 10” 8, SC’, i.e., in the crossing region 
the ion moves at least thirty times slower than the 
intrinsic electron exchange rate. 

In this limit a simple stepwise kinetic model, in which 
the ET is preceded by ion-pair separation, is applicable. 
Therefore, the overall ET rate, kovera,,, is given by 

k 
kionkET 

overa” = kion + k,, (1) 

where kion describes the diffusion of the counterion 
with respect to the donor-acceptor system, and k,, is 
the corresponding intramolecular electron transfer rate 
in the absence of ion-pairing. 

Kuznetsov et al. proposed that, in order for the 
electron transfer to take place, the system has to find 
itself in a transition state in which the counterion has 
diffused to the mid-point between the donor and the 
acceptor [14], and, therefore, the kion from the above 
equation would be defined as the rate of formation of 
such a transition state. We offer a more general picture 
which includes the above suggestion as a special case: 
the ET reaction can proceed with an appreciable rate 
only if the counterion diffuses to a point d, which 
renders the donor and acceptor isoenergetic. For an 
electron exchange reaction in a degenerate system this 
point corresponds to half of the donor-acceptor dis- 
tance, R,, (Fig. 3(a)). Naturally, for non-zero driving 
forces this point will lie closer to the donor than to 
the acceptor (Fig. 3(b)), and in general its position 
can be found by solving Eq. (2) 

(a> AGO=0 (b) AGO<0 

Fig. 3. Schematic representation of the optimum position of the 
counterion, d: (a) in the case of degenerate electron exchange; (b) 
in the case of weakly exoergic ET. 
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where the second term corresponds to the stabilization 
of the donor site due to ion-pairing, and the third term 
to the stabilization of the acceptor by the counterion 
at distance d from the donor. The solution is given by 

d= ;R,,A- -?-- 
J4(AG0)%?d.R$,+e4 

AG0471-E + 4rc.A.G’ (3) 

Eq. (3) and resulting dependence of d on the free 
energy of reaction and on the donor-acceptor distance 
is plotted in Fig. 4. The corresponding rates of electron 
transfer, kET at point d, correspond to degenerate 
electron exchange and will be denoted as k’,,. 

Once d has been established, the rate of ion separation 
to this distance, ki,,, can be calculated from the Boltzman 
distribution as 

ki,,(Ro - d) = const. exp( - [Epair - e2/cd]/kB T) 

= const. exp( -E,,i,lkB T) X exp(e2/edk, T) (4) 

where 

is the Coulombic interaction in a contact ion-pair con- 
sisting of the counterion and the donor-acceptor system 
ion, where r,, is the average donor and acceptor radius 
and r,,, is the radius of the counterion, and R, = rav + r,,,. 
The pre-exponential factor can be either calculated on 
the basis of existing theories [12] or, perhaps not as 
elegantly but much more reliably, an experimental value 

d [ml I I I 1 

R DA [m1 

Fig. 4. Dependence of the optimum counterion distance d on the 
donor-acceptor separation, R,,, and the driving force, AC”, for a 
solvent with dielectric constant of 7.6 (tetrahydrofuran). The rates 
of an isoenergetic electron exchange, AG”=O, and of a weakly 
exothermic reaction, AGO= - 150 meV, are included for comparison. 

for the dissociation rate of the appropriate contact ion- 
pair consisting of the counterion and the donor ion 
into free ions can be inserted in place of the 
const. x exp(Epair/kr) term. This single-point scaling 
procedure is sufficient for an entire family of do- 
nor-acceptor compounds since both the distance and 
the free energy dependence of kion are fully described 
by the exp(e2/edk,7’) term. 

There are some interesting consequences of this 
model: since kion decreases with distance approximately 
as exp(l/r), while k, decreases as exp( -/?r) (where 
p is the characteristic attenuation of the electron transfer 
rate with distance), the ion-pairing control of electron 
transfer peaks at a certain donor-acceptor separation 
and subsequently weakens with increasingR,,, as shown 
qualitatively in Fig. 5. This effect has been confirmed 
by the recent experimental work [16]. 

The quantitative dependence of the overall rate on 
the driving force, AGO, and on the donor-acceptor 
distance, is obtained by substituting Eq. (4) into Eq. 
(1). The results are presented in Fig. 6. The values of 
k,, used in generating these plots are the values for 
the rate of isoenergetic, AGO = 0, intramolecular electron 
exchange at distance RDA, in a medium of dielectric 
constant E, and, as mentioned above, should be denoted 
as k’,,. They were calculated using the slope and pre- 
exponential factor from the work by Closs et al. [17]. 

It is also of interest to compare the rates in the 
presence of the counterion, kovera,,, to the original rates 
k, in the neat solvent as a function of the driving 
force, AGO. Such a comparison reveals more strikingly 
the strong dependence counterion effects on R,,A, and 
the existence of a pronounced maximum of the rate 
depression (Fig. 7). The most important feature of Figs. 
6 and 7 is the prediction of effective counterion dynamics 
control, and the resulting adiabaticity of intramolecular 
electron transfer, over a broad range of donor-acceptor 
distances which practically encompasses all model com- 
pounds which have been prepared and investigated by 
researchers. 

As expected, as the driving force increases, the mag- 
nitude of the rate reduction due to ion-pairing decreases. 

100 

10 

I 

01 
Donor-acceptor distance 

Fig. 5. Qualitative dependence of the overall reaction rate on the 
relative magnitude of kET and ki,,, as a function of the donor-acceptor 
separation. 
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Fig. 6. Dependence of the overall electron transfer reaction rate in 
the presence of a counterion, k,,,,,,,, on the donor-acceptor separation 
RoA and AC’. Parametrized on the basis of Refs. [7,16,17], for an 
Na+ counterion paired with a naphthalene radical anion donor, in 
tetrahydrofuran, p= 1.0. 

RDA [ml 
Fig. 7. Ratio of the overall charge transfer rate, km,,,,,, in the presence 
of strong ion-pairing to the rate kET in neat solvent, plotted as a 
function of the donor-acceptor distance RDA and AC”; the same 
parameters as in Fig. 6. 

A somewhat less intuitive result is that the predicted 
dependence of the effect on the donor-acceptor distance 
becomes more shallow with increasing AGO (Fig. 7). 
This prediction awaits experimental confirmation. 

It is useful to observe that in the above limit the 
intramolecular ET rates will exhibit strong dependence 
on the mobility of the counterion, and hence on its 
radius, and on the solvent viscosity, through the normal 
Stokes-Einstein expression k, T/6qrio,. Since the radius 
of the counterion affects also the Epair, the overall 

dependence of the ET rate on rion will be more complex, 
and it will be similar to the Eigen equation [lS]. 

It should be noted, that as /AGO] approaches jEpair) 
the gating effect of the counterion motion diminishes 
and the electron transfer reaction can proceed with a 
significant rate from an increasing range of positions 
along the qionic coordinate. This will lead to an in- 
creasingly multiexponential character of the kinetics of 
the reaction, until the limiting case B is achieved, when 
the reaction will again exhibit a single exponential 
behavior. 

3.2. Case B. The limit of fast counter-ion motion, 
kiorz B ECET 

This is the ‘slow reaction limit’ of the Sumi-Marcus 
model [ll]. When the relative motion of the ions, ki,“, 
is much faster than the intrinsic rate of electron transfer 
in a given solvent in the absence of an electrolyte, k,, 
the system returns to the normal non-adiabatic behavior, 
and the influence of the counterion can be fully described 
by the additional reorganization energy AioniC, along the 
qionic coordinate of the free energy surface (see Fig. 
l(b)). The nature of the ion motion is now irrelevant, 
since the ET reaction always takes place from fully 
thermally equilibrated distribution along both coordi- 
nates. The experimentally observed ET reactions cor- 
responding to this limit will exhibit a single exponential 
behavior. It should be pointed out that this limit is 
not likely to be of importance in solvents of moderate 
polarity, or in general, when the condition (Epairl> k,T, 
is satisfied. Nevertheless, it is worthwhile providing the 
explicit expression for the ionic contribution to the 
reorganization energy, AiOniC. From simple electrostatic 
considerations (Fig. 8) one obtains 

e2 e2 

= 4?7Y(ra8, + rion) 
-~ 

493-&A 
(6) 

where all symbols have been defined previously. The 
reorganization energy, Aionic, is equal to the work nec- 

L 
q,o”,c (I po,*r 

Fig. 8. The relationship between the reorganization energy and free 
energy of activation: (a) for the Coulombic free energy profile 
corresponding to ion-pairing; (b) for the standard parabolic free 
energy curves. Both diagrams correspond to the isoenergetic case. 
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essary to separate the donor-/counterion pair to a 
distance equal to R,,,. In the limiting case of R,, -+ ~0, 
this work, and the ionic reorganization energy, are equal 
to the total ion-pairing energy, Epair. 

Since, as mentioned previously, the convenient linear 
relationship between the reorganization energy and the 
activation free energy (AG + =f& for an iso-energetic 
exchange) does not exist in the case of Coulombic 
potentials 1141, it is necessary to establish the depen- 
dence of AG fionio the free energy of activation along 
the qionic coordinate, on the corresponding Aionic. Again, 
a simple expression is obtained 

AG fionic = Aionic - & -AGo 
?r DA 

= -E,.,-2 -!f- 
47TERDA 

-AGO 

2 -- 
RDA 1 -AGO 

In the limit of R DA--f ~0, the activation energy converges 
to the difference between ion-pairing energy, Epair, and 
the free energy of reaction, AGO. 

The size of the counterion will continue to influence 
the intramolecular ET rate, however, it will be only 
through the dependence of AG +ionic and bionic on the 
contact ion-pair stabilization, Epaj,. Naturally, the ionic 
component of activation energy is diminished in highly 
polar solvents, in contrast with the activation barrier 
associated with normal, polar solvation, which in the 
weakly exoergic region increases with increasing solvent 
polarity. 

4. Conclusions 

We have presented an approximate theoretical model 
of the influence of specific ion-pairing with chemically 
inert ions on the rates of weakly exoergic intramolecular 
electron transfer. The model is based on the concept 
of two-dimensional free energy surface where the mutual 
diffusion of ions corresponds to the slow, adiabatic 
mode. The dependence of the overall transfer rate on 
the interplay between the donor-acceptor electronic 
coupling, counterion diffusion and the driving force has 
been discussed. 

The model treats the counterion/donor-acceptor ion 
complex as an isolated, strongly correlated ion-pair, a 
picture quite appropriate for weakly dissociated so- 

lutions in solvents of low polarity [13]. In the above 
considerations we have consciously omitted all second- 
order phenomena, such as the ionic atmosphere or the 
reduction of the dielectric constant of the solvent in 
the presence of an electrolyte (dielectric saturation). 

In addition, expressions for the ionic contribution to 
the reorganization energy and the free energy of ac- 
tivation have been derived for the kion~kET limit. The 
behavior in this regime is currently being studied ex- 
perimentally in this laboratory. 

The work to extend the model beyond the single 
exponential rate approximation and to cover the entire 
AGO range is in progress. 
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